Natural Vision Enhancers with FloraGLO®

BENEFITS

- Improves visual performance and processing speed\(^1\)\(^5\)\(^8*)
- Protects eyes from damaging blue light\(^6\)\(^9*)
- Reduces risk of age-related macular degeneration (AMD)\(^9\)\(^14*)
- Improves visual function in early AMD\(^15\)\(^17*)
- Potent free radical scavenger\(^18\)\(^19\)

Doctor’s Best Natural Vision Enhancers is a combination of the nutrients most clinically-proven to support vision. This formula includes DHA (docosahexaenoic acid, omega-3), proven indispensable for vision processing in both the eye and the brain.\(^1\)\(^5\) It supplies the xanthophyll carotenoids lutein and zeaxanthin, which protect eyes against blue light damage.\(^6\)\(^9*)

RESEARCH FINDINGS

Researchers measured the ability of lutein and zeaxanthin supplementation to affect visual processing speed. Visual psychophysics provides a relatively simple and precise means of measuring visual processing speed called the temporal contrast sensitivity function (tCSF). Past study has shown that macular pigment (a collection of xanthophylls, lutein (L), meso-zeaxanthin (MZ) and zeaxanthin (Z), found in the retina) optical density (MPOD) is positively correlated with tCSF. This study found similar correlations when testing 102 young healthy subjects. As a follow-up the researchers randomized 69 subjects to receive a placebo (n=15) or one of two L and Z supplements (n=54). MPOD and tCSF were measured psychophysically at baseline and 4 months. Neither MPOD nor tCSF changed for the placebo condition, but both improved significantly from supplementation. These results show that supplementation with L and Z can increase processing speed, even in young, healthy subjects.\(^1\)

A separate study assessed whether higher macular pigment optical density (MPOD) and lutein (L) and zeaxanthin (Z) supplementation are related to improvements in glare disability, photostress recovery, and chromatic contrast. This study used a randomized, double-blind, placebo-controlled design. The visual effects of 1 year of supplementing L (10 mg/d) and Z (2 mg/d) were investigated. One hundred fifteen young, healthy subjects were recruited and randomized into the study (58 received placebo, 57 L+Z). The study concluded that daily supplementation with L+Z resulted in significantly increased serum levels and MPOD and improvements in chromatic contrast and recovery from photostress. These results are consistent with past studies showing that increasing MPOD leads to improved visual performance.\(^2\)

A different study examined the effect of lutein supplementation on visual function in healthy drivers with long-term light exposure. The study was a randomized, double-blind, placebo-controlled, 1-year intervention study. It included 120 normal participants (drivers). The active (A) group consumed 20 mg of lutein daily. Participants were assessed at baseline, 1, 3, 6, and 12 mo. Assessment included visual acuity, serum lutein concentrations, macular pigment optical density (MPOD), and visual performance. At the onset and at end of intervention, dietary intakes of lutein and visual-related quality of life were measured. The study concluded that daily supplementation with 20 mg of lutein increases MPOD levels and that lutein may benefit night driving and other spatial discrimination tasks carried out under low illumination.\(^3\)

A triple-blind placebo-controlled randomized repeated-measures trial was conducted with 74 healthy participants, aged 45–77 years. Visual acuity measures and plasma DHA were determined at baseline and after 90 days of either 252 mg DHA, 60 mg EPA and 10 mg vitamin E, or placebo (1000 mg soybean oil). Ninety days of DHA supplementation was found to significantly raise both plasma DHA and total \(\omega\)-3 plasma levels in treatment group. For participants with corrected vision, the group receiving DHA were found to have significantly better right eye visual acuity post-treatment in comparison with placebo group.\(^4\)

Another study assessed effects of docosahexaenoic acid (DHA) on visual function in DHA-deficient patients with peroxisome biogenesis disorders.

Supplement Facts

<table>
<thead>
<tr>
<th>Serving Size</th>
<th>2 softgels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Servings per container</td>
<td>30 servings</td>
</tr>
<tr>
<td>Amount per serving</td>
<td>% Daily Value</td>
</tr>
<tr>
<td>Fish Oil Concentrate</td>
<td></td>
</tr>
<tr>
<td>Total Omega-3 fatty acids (as fish oil triglycerides)</td>
<td>285 mg</td>
</tr>
<tr>
<td>DHA (DocosaHexaenoic Acid)</td>
<td>200 mg</td>
</tr>
<tr>
<td>EPA (EicosaPentaenoic Acid)</td>
<td>45 mg</td>
</tr>
<tr>
<td>Lutein (from FloraGLO(^{\text{®}}))</td>
<td>20 mg</td>
</tr>
<tr>
<td>Zeaxanthin (from FloraGLO(^{\text{®}}) OPTISHARP(^{\text{®}}))</td>
<td>4 mg</td>
</tr>
</tbody>
</table>

† Daily Value not established.

Other Ingredients: Gelatin capsule (bovine gelatin, glycerin, purified water, annatto), yellow beeswax.

Contains Fish (oil: Anchovy)

Suggested Adult Use: Take 2 softgels daily without food, or as recommended by a nutritionally-informed physician.

Non-GMO / Gluten Free

Store in a cool dry place.

FloraGLO\(^{\text{®}}\) and OPTISHARP\(^{\text{®}}\) are registered trademarks of Kemin Industries Inc.

\(*\) These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure or prevent any disease.
Many people take measures to protect their eyes from ultra violet (UV) light. A more recently discovered concern for eye health is blue light. In certain wavelengths, blue light is implicated in development of age-related macular degeneration (AMD). Nowadays, smart phones, computers, tablets, LED and fluorescent lights -- most of which emit high levels of blue light -- are ubiquitous. So, our exposure to blue light is everywhere, and increasing. Constant exposure to blue-violet light can accumulate over time, with the potential to damage retinal cells, which can cause retinal cell death, leading to AMD. The ingredients in Natural Vision Enhancers can help protect eyes from blue light damage.6-9

A study compared action spectra for visual discomfort in the fovea and the parafovea and to determine the effect of macular pigment (MP). Visual discomfort thresholds to lights from 440 to 600 nm were obtained for six young (<35 y), visually normal subjects with a wide range of MP densities. Foveal and parafoveal conditions were assessed. Discomfort thresholds were also obtained for xenon-white light, and a broadband yellow light. MP was measured psychophysically using heterochromatic flicker photometry (HFP). The study concluded that MP simultaneously reduces visual discomfort and protects from light damage at short wavelengths. These findings indicate that the spectral absorption properties and spatial distribution of MP combine to protect the retina while enhancing visual performance.8

Three dietary carotenoids, lutein (L), zeaxanthin (Z) and meso-zeaxanthin (MZ) accumulate at the central retina (macula), where they are collectively referred to as macular pigment (MP). MPs pre-receptorial absorption of blue light and consequential attenuation of chromatic aberration and light scatter effects are important for optimal visual function. Furthermore, antioxidant activity of MPs constituent carotenoids and the same blue-light-filtering properties underlie the rationale for its protective role for age-related macular degeneration (AMD). Supplementation with L, Z and MZ augments MP and enhances visual performance in diseased and non-diseased eyes, and may reduce risk of AMD development and/or progression.8

Other researchers assessed associations of serum, red blood cell membranes (RBCM) and dietary long-chain n-3 polyunsaturated fatty acids (LC-PUFAs) with age-related macular degeneration (AMD). The study included 290 patients with AMD in one eye and early AMD lesions in the other eye, and 144 normal vision controls without AMD. Seafood intake was estimated by questionnaire. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) composition in serum and RBCM were determined by gas chromatography. The researchers concluded RBCM EPA+DHA, were associated strongly with AMD and may help identify subjects at high risk for AMD, who may most benefit from nutritional interventions.10

Another research team studied macular pigment ocular density (MPOD) in patients with early age macular degeneration (AMD) before and one year after nutritional supplementation with lutein and docosahexaenoic acid (DHA). Forty-four patients with AMD were randomly divided into two groups receiving placebo (n = 27), or nutritional supplement (n = 23, 12 mg of lutein and 280 mg of DHA daily). Heterochromatic flicker photometry was used to determine MPOD. The researchers concluded that lutein and DHA supplementation is effective in increasing MPOD and may aid in prevention of age-related macular degeneration.11

A meta-analysis examined whether an association exists between blood levels of antioxidants or vitamins and age-related cataract in observational studies. The researchers reviewed 13 studies with 18,999 participants. The researchers concluded that their meta-analysis provides additional evidence supporting the view that blood levels of lutein and zeaxanthin are inversely associated with risk of age-related cataract.12

Another study investigated whether omega-3 intake reduced likelihood of developing central geographic atrophy (CGA) and neovascular (NV) AMD. This was a nested cohort study within a multicenter phase 3 clinical trial, the Age-Related Eye Disease Study (AREDS), to study progression to advanced AMD in 1,837 persons at moderate-to-high risk of this condition. The study concluded that the 12-year incidence of CGA and NV AMD in participants at moderate-to-high risk of these outcomes was lowest for those reporting the highest consumption of omega-3 LC-PUFAs. If these results are generalizable, they may guide the development of low-cost and easily implemented preventive interventions for progression to advanced AMD.13

Other researchers examined two independent cohorts of donor eyes and related their retinal lipid profiles with systemic biomarkers of lipid intake. They found that serum and red blood cell lipids, and to a lesser extent orbital fat, are excellent biomarkers of retinal lipid content and n-3/n-6 ratios in both the LC-PUFA and VLC-PUFA series. Eyes from age-related macular degeneration (AMD) donors have significantly decreased levels of VLC-PUFAs and low n-3/n-6 ratios. The researchers concluded that their results are consistent with the protective role of dietary n-3 LC-PUFAs against AMD and emphasize the importance of monitoring systemic biomarkers of lipid intake when undertaking clinical trials of lipid supplements for prevention and treatment of retinal disease.14

A separate study investigated functional and macular pigment (MP) changes in patients with early age-related macular degeneration (AMD) after supplementation with lutein and zeaxanthin. 112 patients with early AMD were randomly assigned to receive 10 mg lutein, 20 mg lutein, lutein (10 mg)+zeaxanthin (10 mg), or placebo daily for 2 years. MP optical density (MPOD) was recorded at baseline, 48 weeks and 2 years. Retinal sensitivities were measured by multifocal electroretinogram for peak-to-peak amplitude (NPIP) at baseline and at 48 weeks, and in terms of microperimeter-determined mean retinal sensitivity (MRS) at 48 weeks and 2 years. The study concluded that supplementation with lutein and/or zeaxanthin increases MPOD, and supplemental lutein enhances retinal sensitivity in patients with early AMD.15

Other researchers examined effects of lutein and zeaxanthin supplementation on retinal function using multifocal electroretinograms (mFERG) in patients with early age-related macular degeneration (AMD). This was a randomized, double-masked, placebo-controlled trial of 108 subjects with early AMD, randomly assigned to receive 10 mg/d lutein (n = 27), 20 mg/d lutein (n = 27), 10 mg/d lutein plus 10 mg/d zeaxanthin (n = 27), or placebo (n = 27) for 48 weeks. Thirty-six age-matched controls without AMD were also enrolled to compare baseline data with early AMD patients. mFERG responses and macular pigment optical densities (MPODs) were recorded and analyzed at baseline and at 24 and 48 weeks. The researchers concluded that early functional abnormalities of the central retina in early AMD patients could be improved by lutein and zeaxanthin supplementation. These improvements may be potentially attributed to MPOD elevations.16

Another study evaluated whether zeaxanthin (Zx) supplementation raises macular pigment optical density (MPOD) and has visual benefits for patients with early atrophic macular degeneration having visual symptoms but lower-risk National Institute of Health/National Eye Institute/Age-Related Eye Disease Study characteristics. This was a 1-year, n = 60, 4-visit, intention-to-treat, prospective, randomized controlled clinical trial of patients with mild-to-moderate age-related macular degeneration (AMD) randomly assigned to 1 of 2 supplement intervention groups: 8 mg Zx (n = 25) and 8 mg Zx plus 9 mg lutein (L) (n = 25) or 9 mg L (“Faux Placebo,” control group, n = 10). The study concluded that, in older male patients with AMD, Zx-induced foveal MPOD elevation mirrored that of L and provided...
complementary, distinct visual benefits by improving foveal cone-based visual parameters, whereas L enhanced those parameters associated with gross detailed rod-based vision, with considerable overlap between the 2 carotenoids.17

A different research team investigated effects of a 12-month intervention with macular xanthophylls (lutein and zeaxanthin) and ω-3 LC-PUFAs on xanthophylls and fatty acids in plasma, antioxidant capacity, and optical density of macular pigment in patients with nonexudative AMD. The study was a randomized, double-blind, placebo-controlled, parallel clinical trial, conducted for 12 months with 143 participants. Participants were divided as follows: placebo group, group 1 (daily capsule 10 mg lutein, 1 mg zeaxanthin, 100 mg docosahexaenoic acid, and 30 mg eicosapentaenoic acid), and group 2 (twice the dose used in group 1). The researchers concluded that supplementing with lutein, zeaxanthin, and ω-3 LC-PUFAs for 12 months significantly improved plasma antioxidant capacity, circulating macular xanthophyll levels, and the optical density of the macular pigment.18

Another study aimed to determine whether lutein affects oxidative damage biomarkers. A randomized, double-blind, placebo-controlled trial of lutein supplementation was conducted. 117 subjects were randomly assigned to receive 10 or 20 mg/d of lutein or placebo for 12 weeks. Plasma carotenoid concentrations, total antioxidant capacity (TAOC), lipoprotein profile, and antioxidant enzymes activities were determined at baseline and at 6, and 12 weeks after treatment. Biomarkers of oxidative damage to protein and lipids, and C-reactive protein (CRP) concentrations were measured at baseline and after supplementation. The study found that plasma lutein and TAOC significantly increased in both treatment groups. Lutein supplementation decreased lipid peroxidation by increasing plasma lutein concentrations and antioxidant capacity.19

SAFETY
Pathology analysis suggested no adverse clinical implications of consuming lutein or zeaxanthin.20

The totality of evidence on beneficial and adverse effects from Age-Related Eye Disease Study (AREDS2) and other studies suggests that lutein/zeaxanthin could be more appropriate than beta carotene in AREDS-type supplements.21

SCIENTIFIC REFERENCES

* These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure or prevent any disease.